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ABSTRACT

We have investigated the value of isotropic seismic con-
verted-wave (i.e., PS) data for reservoir parameter estimation
using stochastic approaches based on a floating-grain rock-
physics model. We first performed statistical analysis on a
simple two-layer model built on actual borehole logs and
compared the relative value of PS data versus amplitude-
variation-with-offset (AVO) gradient data for estimating the
floating-grain fraction. We found that PS data were signifi-
cantly more informative than AVO gradient data in terms of
likelihood functions, and the combination of PS and AVO
gradient data together with PP data provided the maximal
value for the reservoir parameter estimation. To evaluate the
value of PS data under complex situations, we developed a
hierarchical Bayesian model to combine seismic PP and PS
data and their associated time registration. We extended a
model-based Bayesian method developed previously for
inverting seismic PP data only, by including PS responses and
time registration as additional data and PS traveltime and
reflectivity as additional variables. We applied the method to
a synthetic six-layer model that closely mimics real field sce-
narios.We found that PS data provided more information than
AVO gradient data for estimating the floating-grain fraction,
porosity, net-to-gross, and layer thicknesses when their cor-
responding priors were weak.

INTRODUCTION

Multicomponent seismic surveying has been used for hydrocarbon
exploration for decades because it can capture the seismic wavefield
more completely than conventional single-element techniques
(Stewart et al., 2002). Although several types of energy conversion

may occur when seismic waves pass through the underlying earth,
transmitted or multiple conversions generally have much lower
amplitudes than P-down and S-up reflections (Rodriguez-Saurez,
2000). Consequently, among many applications of multicomponent
seismic data, the use of converted-wave or PS images receives much
more attention (Stewart et al., 2002; Mahmoudian and Margrave,
2004; Veire and Landrø, 2006). However, the high acquisition
cost of collecting multicomponent seismic data compared with con-
ventional seismic surveys and the challenge in processing multi-
component data make the use of converted-wave data as a routine
practice difficult.
The interest in using multicomponent seismic data again for hy-

drocarbon applications is inspired by recent advances in seismic
data acquisition technologies, such as ocean-bottom seismometer
techniques (e.g., ocean-based cables and ocean-based nodes) (Har-
dage et al., 2011; Pacal, 2012). With the use of new techniques,
multicomponent seismic data can be collected more reliably com-
pared with conventional seismic survey techniques. Another major
reason for using multicomponent seismic data is the need to esti-
mate spatially distributed ductile fraction (Glinsky et al., 2013)
and to characterize fractures for unconventional resources because
S-wave splitting provides an effective approach to image fracture
orientation and density (Bale et al., 2013). There are many other
successful applications of converted-wave data, such as time-lapse
monitoring of geomechanical changes (Davis et al., 2013) and res-
ervoir characterization (Brettwood et al., 2013).
In this study, we use stochastic approaches to investigate the

value of converted-wave data for reservoir parameter estimation
based on a floating-grain rock-physics model developed by DeMar-
tini and Glinsky (2006). The model is well documented in Gunning
and Glinsky (2007) and appropriate for porous sedimentary rocks in
which some solid materials are “floating” or not involved in loading
support because it can explain the observed variation in P-wave
velocity versus density trends and the lack of variation in the P-
wave velocity versus S-wave velocity trends. The rock-physics
relationship can be modified and applied to unconventional shale
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resource exploration as done by Glinsky et al. (2013), in which the
media are considered as binary mixing of brittle and ductile materi-
als and the ductile fraction plays the same role as the floating-
grain fraction in this model.
We use stochastic methods in the study because they have many

advantages over traditional deterministic approaches in reservoir
parameter estimation using multiple geophysical data sets, espe-
cially when we deal with complex issues involving uncertainty
(Chen et al., 2008). We start by analyzing a simple two-layer model
by comparing the relative value of PS versus amplitude-variation-
with-offset (AVO) gradient data for estimating a floating-grain frac-
tion according to their likelihoods when rock-physics models and
seismic data are subject to uncertainty. We then focus on more com-
plicated cases involving multiple layers and develop a hierarchical
Bayesian model to combine seismic PP and PS data and their as-
sociated time registration.
We extend the model-based Bayesian method developed by

Gunning and Glinsky (2004) for inverting seismic PP data to allow
isotropic converted-wave responses and PS event time registration
as additional data. We use the same rock-physics models and Mar-
kov chain Monte Carlo (MCMC) sampling strategies as Gunning
and Glinsky (2004). Because this study is built on the previous
work, the subsequent descriptions will be focused on the new de-
velopment and applications; the details of other parts can be found
in Gunning and Glinsky (2004).

ROCK-PHYSICS MODEL AND ANALYSIS
OF TWO-LAYER MODELS

Floating-grain rock-physics model

We use the floating-grain rock-physics model developed by
DeMartini and Glinsky (2006) and Gunning and Glinsky (2007)
to link reservoir parameters to seismic attributes. In the model, the
subsurface is considered as a binary mixture of reservoir members
(e.g., sand) and nonreservoir members (e.g., shale). For sand, we
assume that some solid materials are floating in pore space and
the seismic properties (i.e., seismic P- and S-wave velocity and
density) can be characterized by two fundamental parameters:
the loading depth z, which is a measure of effective pressure, and
the floating-grain fraction x. The general model is given below as

VP ¼ avp þ bvpzþ cvpxþ εvp; (1)

Vs ¼ avs þ bvsVp þ εvs; (2)

and

ρ ¼ aρ þ bρVP þ cρxþ ερ; (3)

where VP, VS, and ρ are the seismic P- and S-wave velocity and
density, respectively; avp, bvp, cvp, avs, bvs, aρ, bρ, and cρ are the
fitting coefficients. Symbols εvp, εvs, and ερ represent uncertainty
associated with the regression equations. We assume that εvp,
εvs, and ερ have Gaussian distributions with zero mean and variance
of σ2vp, σ2vs, and σ2ρ, respectively.
We rewrite equations 2 and 3 in terms of the loading depth z and

the floating-grain fraction x as follows:

VS ¼ ðavs þ avpbvsÞ þ bvsbvpzþ bvscvpxþ ðbvsεvp þ εvsÞ
(4)

and

ρ¼ðaρþavpbρÞþbρbvpzþðbρcvpþcρÞxþðbρεvpþ ερÞ:
(5)

We can see that in the rock-physics model, seismic properties lin-
early depend on the reservoir parameters with uncertainty.
We can use different relationships for shale because seismic prop-

erties in shale do not depend on the floating-grain fraction. As in
Gunning and Glinsky (2007), we drop the floating-grain fraction
from equations 1 and 4 and use the power-law form of the Gardner
relationship (Gardner et al., 1974) for density, i.e., ρ ¼ avbp þ ερ,
where a and b are fitting coefficients. By fitting actual borehole
logs from suitable field sites, we can obtain all the needed coeffi-
cients and their associated standard errors for sand and shale mem-
bers. Table 1 is a summary of all those values.

Reflectivity coefficients

We use the linearized Zoeppritz approximations (Aki and Ri-
chards, 1980) for small contrasts to obtain PP and PS reflectivity
coefficients at an interface, which are given below as

Rpp¼
1

2

�
ΔVP

VP

þΔρ
ρ

�
þ1

2

�
ΔVP

VP

−4r2sp

�
Δρ
ρ
þ2

ΔVS

VS

��
sin2θp

þ1

2

ΔVP

VP

sin2θp tan
2θp (6)

and

Rps ¼ −
sin θp
2 cos θs

ð1 − 2r2sp sin2 θp þ 2rsp cos θp cos θsÞ
Δρ
ρ

þ 2 sin θp
cos θs

ðr2sp sin2 θp − rsp cos θp cos θsÞ
ΔVS

VS

; (7)

where VP ¼ðVP1þVP2Þ∕2, VS ¼ðVS1þVS2Þ∕2, ρ ¼ ðρ1 þ ρ2Þ∕2,
rsp ¼ VS∕VP, ΔVP ¼ VP2 − VP1, ΔVS ¼ VS2 − VS1, and Δρ ¼
ρ2 − ρ1, where (VP1, VS1, and ρ1) and (VP2, VS2, and ρ2) are the
P- and S-wave velocity and density in the layers above and below the

Table 1. Sand and shale rock-physics model coefficients from
actual borehole logs.

Regression equations Standard errors Units

Sand

VP ¼ 645þ 0.508zþ 5490x 105 m/s

VS ¼ −1220þ 0.894VP 69 m/s

ρ ¼ 1.70þ 1.65 × 10−4VP þ 1.56x 0.0149 g/cc

Shale

VP ¼ −1640þ 0.946z 145 m/s

VS ¼ −1030þ 0.801VP 63 m/s

ρ ¼ 0.651V0.166
P 0.030 g/cc
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interface. Symbols θp and θs are the P- and S-wave incident angles;
they are connected through Snell’s law as sin θp∕VP ¼ sin θs∕VS.
Equation 6 is the same as the one used by Castagna et al. (1998),

in which the first and second terms on the right of the equation are
referred to as AVO intercept and gradient, respectively. The third
term is high-order variations and dominated at far offsets near
the critical angle. Equation 7 is the same as the one used by Veire
and Landrø (2006). For ease of description, we let A0 be the AVO
intercept, A1 be all the terms on the right side of equation 7, and A2

be the AVO gradient with the high-order term. Let

�
g1 ¼ − sin θp

2cos θs
ð1− 2r2sp sin2 θp þ 2rsp cos θp cos θsÞ; and

g2 ¼ 2 sin θp
cos θs

ðr2sp sin2 θp − rsp cos θp cos θsÞ:
(8)

We have the following relationship:

0
B@
A0

A1

A2

1
CA¼

0
B@

1∕2 1∕2 0

g1 0 g2

−2r2sp sin2θp sin2θpð1þ tan2θpÞ∕2 −4r2sp sin2θp

1
CA

×

0
B@

Δρ∕ρ

ΔVP∕VP

ΔVS∕VS

1
CA: (9)

Weuse the letterA to represent the vector on the left side of equation 9
and useMa andΔC to represent the matrix and the vector on the right
side of the equation. Thus, equation 9 becomes A ¼ MaΔC. These
notations will be used in the subsequent text.

Synthetic two-layer model

To demonstrate the value of PS data, we start from a simple two-
layer model based on actual borehole logs fromGunning and Glinsky
(2007), with the first layer being shale and the second layer being
sand whose rock-physics models are given in Table 1. Because we
focus on estimation of the floating-grain fraction in the sand layer, we
fix the loading depth as z1 ¼ 5200 m and z2 ¼ 5321 m for the first
and second layers. By using the shale regression equations with co-
efficients given in Table 1, we have VP1 ¼ 3279 m∕s, VS1 ¼
1596 m∕s, and ρ1 ¼ 2.50 g∕cm3. By using equations 1, 4, and 5,
we get

Δρ ¼ ðaρ þ avpbρ þ bvpbρz2 − ρ1Þ þ ðbρcvp þ cρÞx
þ ðερ þ bρεvpÞ; (10)

ΔVP ¼ ðavp þ bvpz2 − VP1Þ þ cvpxþ εvp; (11)

and

ΔVS ¼ ðavs þ avpbvs þ bvpbvsz2 − VS1Þ þ bvscvpx

þ ðεvs þ bvsεvpÞ: (12)

Let

8<
:

wρ ¼ aρ þ avpbρ þ bvpbρz2 − ρ1;
wvp ¼ avp þ bvpz2 − VP1;
wvs ¼ avs þ avpbvs þ bvpbvsz2 − VS1.

(13)

We have

0
B@

Δρ∕ρ
ΔVP∕VP

ΔVS∕VS

1
CA ¼

0
B@

wρ∕ρ
wvp∕VP

wvs∕VS

1
CAþ

0
B@

ðcρ þ bρcvpÞ∕ρ
cvp∕VP

bvscvp∕VS

1
CAx

þ

0
B@

ðερ þ bρεvpÞ∕ρ
εvp∕VP

ðεvs þ bvsεvpÞ∕VS

1
CA: (14)

Let W0, W1, and εw represent the first, second, and third vectors on
the right side of equation 14; thus, we have ΔC ¼ W0 þW1xþ εw.
By assuming that the errors in equations 1–3 are independent, we can
obtain the following covariance matrix Σw:

Σw¼

0
B@
ðσ2ρþb2ρσ2vpÞ∕ρ2 bρσ2vp∕ðρVPÞ bρbvsσ2vp∕ðρVSÞ
bρσ2vp∕ðρVPÞ σ2vp∕V2

P bvsσ2vp∕ðVPVSÞ
bρbvsσ2vp∕ðρVSÞ bvsσ2vp∕ðVPVSÞ ðσ2vsþb2vsσ2vpÞ∕V2

s

1
CA:

(15)

Synthetic seismic data and likelihood function

For the purpose of this analysis, we consider PP and PS reflec-
tivities at the interface as data even if they often are unknown and
estimated from full-waveform seismic responses in practice. Spe-
cifically, we use a PP trace with a zero incident angle (i.e., A0), a
PS trace with the P-wave incident angle of 45° (i.e., A1), and an
AVO gradient trace (including the high-order term) with the P-wave
incident angle of 45° (i.e., A2). Let vector Rm be the data with ad-
ditive Gaussian random noise εm; we thus have

Rm ¼ MdAþ εm ¼ MdMaΔCþ εm
¼ MdMaðW0 þW1xÞ þ ðεm þMdMaεwÞ; (16)

whereMd is referred to as a data matrix that determines which types
of data are used for analysis (see Appendix A).
The second term on the right side of equation 16 is residuals; they

include measurement errors in seismic data and uncertainty caused
by rock-physics models. Because both the measurement errors and
uncertainty in rock-physics models are assumed to have multivari-
ate Gaussian distributions, their summation also has a multivariate
Gaussian distribution (Stone, 1995). Let Σm be the covariance ma-
trix of the measurement errors and Σw be the covariance matrix of
the uncertainty in rock-physics models. The combined covariance
thus is given by Σc ¼ Σm þ ðMdMaÞΣwðMdMaÞT, where Σw is
given by equation 15. Consequently, the likelihood function of x
given data Rm is a multivariate Gaussian distribution as follows:

Stochastic inversion of PP and PS data R235
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fðRmjxÞ∝
���Σc

���−1∕2

× exp

�
−ðRm−MdMaW0−MdMaW1xÞTΣ−1

c

× ðRm−MdMaW0−MdMaW1xÞ
�
: (17)

Model comparison

We compare the estimation results obtained by using four com-
binations of seismic data by specifying the data matrices: (1) using
the PP data only, (2) using the PP and PS data, (3) using the PP and
AVO gradient data, and (4) using all the seismic data (see Appen-
dix A). Their corresponding data are represented by Rð1Þ

m , Rð2Þ
m , Rð3Þ

m ,
and Rð4Þ

m . To avoid the effects of prior distribution on the floating-
grain fraction, we focus on the likelihood functions fðRðkÞ

m jxÞ (k ¼
1; 2; 3; and 4) for those models.
Figure 1 compares the likelihood functions for the true floating-

grain fraction being 0.0 (Figure 1a) and 0.035 (Figure 1b). The
noise levels for all the data are equal to 0.01 in the unit of reflection
coefficients (RFCs). As we expect, the true values have the maximum

likelihood in both the cases. It is clear that the likelihoods of using the
PP and AVO gradient data are considerably larger than those of using
the PP data only. The likelihoods of using the PP and PS data are
significantly larger than those of using the PP and AVO gradient data.
This suggests that the combination of the PP and PS data is more
informative for estimating the floating-grain fraction than the combi-
nation of the PP and AVO gradient data. When we use all the data, we
get the largest likelihoods. This implies that the PS and AVO gradient
data might complement each other to some degree. In addition, we
can see that the clean sand (i.e., x ¼ 0; see Figure 1a) overall has
larger likelihoods than the sand with floating grain (i.e., x ¼ 0.035;
see Figure 1b).
The above comparison may depend on noise levels in the seismic

data. In practice, PS and AVO gradient data typically have larger
errors than PP data. To investigate the effects of noise on the like-
lihood analysis, we vary noise levels in PS and AVO gradient data
from 0.01 RFC to 0.1 RFC while still fixing the noise level of the PP
data as 0.01 RFC. We first calculate the maximum likelihoods for
each combination of seismic data and then normalize the results by
the values of using the PP data only to get the following likelihood
ratios as

rk ¼
maxffðRðkÞ

m jxÞg
maxffðRð1Þ

m jxÞg
: (18)

Figure 2 shows the likelihood ratios for the true floating-grain
fraction of 0.0 and 0.035. Generally, as the noise levels in the PS
and AVO gradient data increase, the likelihood ratios decrease and
approach 1, the result of using the PP data only. Additionally, the
likelihood ratios of using the PP and PS data always are larger than
those of using the PP and AVO gradient data; the likelihood ratios of
using all the data always have the largest values. This suggests that
the combination of PP and PS data is more informative than that of
PP and AVO gradient data even under large noise levels.

BAYESIAN MODEL FOR MULTIPLE LAYERS

Hierarchical Bayesian models

Although analysis of two-layer models allows us to understand
the value of PS data for floating-grain fraction estimation, it is mar-
ginal analysis of relative changes of compaction and floating-grain
fraction across an interface under simple conditions. In the case of
multiple layers, we need to develop a hierarchical Bayesian model
to combine seismic PP and PS data and their time registration. This
model is an extension of the model-based Bayesian method by Gun-
ning and Glinsky (2004) with converted-wave responses and PS
time registration as additional data and PS traveltime and reflectiv-
ity as additional unknowns.
We consider effective seismic P- and S-wave velocities, VP and

VS, density ρ, and seismic PP and PS reflectivities, Rpp and Rps as
unknowns. They are functions of rock-physics parameters through
suitable rock-physics models. We consider PP traveltime tpp as a
primary unknown; the layer thickness d and PS traveltime tps can
be derived from the PP traveltime and associated effective seismic
attributes. The data used for inversion include seismic PP and PS
full-waveforms Spp and Sps and PP and PS event registration time
(Tpp and Tps). If available, we can also include other types of in-
formation from nearby boreholes, such as depth constraints Db.

0.03 0.06 0.09 0.12 0.15 0.18

 3

 6

 9

12

15

Floating-grain fraction

Li
ke

lih
oo

d

 

 
PP only
PP + AVO
PP + PS
All data

0.03 0.06 0.09 0.12 0.15 0.18

 2

 4

 6

 8

10

Floating-grain fraction

Li
ke

lih
oo

d

 

 
PP only
PP + AVO
PP + PS
All data

a)

b)

Figure 1. Likelihoods of the floating-grain fraction given various
data combinations for the true value of (a) 0.0% and (b) 3.5%.
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Figure 3 shows all the unknowns, available data, and their relation-
ships; the dashed rectangle highlights our extension to the method by
Gunning and Glinsky (2004). Specifically, we add two unknowns
related to the converted wave (i.e., tps and Rps) and two types of new
data sets (i.e., Tps and Sps). Following the direct graphical model, we
have the hierarchical Bayesian model:

fðα; tpp; tps; d; vp; vs; ρ;Rpp;RpsjSpp; Sps;Tpp;Tps;DbÞ
∝ fðSppjtpp;RppÞfðSpsjtps;RpsÞfðTppjtppÞ
× fðTpsjtpsÞfðDbjdÞfðRppjvp; vs; ρÞ
× fðRpsjvp; vs; ρÞfðdjtpp; vpÞfðtpsjtpp; vp; vsÞ
× fðvp; vs; ρjαÞfðαÞfðtppÞ: (19)

Equation 19 defines a joint posterior probability distribution func-
tion of all unknown parameters up to a normalizing constant. The first
five terms on the right side of the equation are the likelihood func-
tions of available data, which link data to the associated unknowns;
the other terms on the right side are the prior probability distributions,
which are derived from other sources of information, such as rock-
physics models. We define all the likelihood functions and prior dis-
tributions in a similar way to the method of Gunning and Glinsky
(2004). In the following, we only describe the new development.
Equation 19 is a general Bayesian model for combining seismic PP

and converted-wave data; we can simplify or vary the equation in
different ways depending on specific applications. For example, we
can consider PP and PS reflectivities as functions of vp, vs, and ρ, but
ignore their associated uncertainties. We can also consider depth d as
a function of P-wave velocity and PP traveltime. Because in Bayesian
statistics (Bernardo and Smith, 2000) data affect unknowns only
through likelihood functions, we can use some statistics QðSpp; SpsÞ
of seismic data Spp and Sps in the Bayesian model, e.g., the rotation
and truncation of original seismic data through principal component
analysis (Venables and Ripley, 1999) or other methods. Conse-
quently, we can have the following Bayesian model:

fðα; tpp; tps; vp; vs; ρjSpp; Sps;Tpp;TpsÞ
∝ fðQjtpp; tps; vp; vs; ρÞfðTppjtppÞfðTpsjtpsÞ
× fðtpsjtpp; vp; vsÞfðvp; vs; ρjαÞfðαÞfðtppÞ: (20)

Likelihood function of seismic data

We describe a general form of the likelihood function in terms of
statistics of seismic data, with the likelihood function of original seis-
mic data as a special case of the form. Let Gðtpp; tps; vp; vs; ρÞ be the
response vector of a suitable forward model that links seismic statis-
ticsQ to unknowns. Let vector εm represent the residuals. We assume
that the residuals have the multivariate Gaussian distribution with
zero mean and the covariance matrix of Σm; thus, we have

fðQjtpp; tps; vp; vs; ρÞ ¼ ð2πÞ−k∕2
���Σm

���−1∕2

× exp

�
−
1

2
ðQ −Gðtpp; tps; vp; vs; ρÞÞTΣ−1

m

× ðQ −Gðtpp; tps; vp; vs; ρÞÞ
�
; (21)
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Figure 2. Likelihood ratios of using various combinations of seis-
mic data compared with that of using PP data only as a function of
measurement errors in PS and AVO gradient data for the true value
of (a) 0.0% and (b) 3.5%.
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Figure 3. Dependent relationships among unknown parameters and
data.
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where k is the dimension of the multivariate Gaussian distribution
and jΣmj is the determinant of the covariance matrix Σm. One of the
main advantages of using statistics in equation 21 is that we can have
more options in defining likelihood functions so that we can make
their residuals uncorrelated.

Likelihood functions of PP and PS event time
registration

The use of event time registration as data is one of the main ad-
vantages of the method by Gunning and Glinsky (2004), as well as
the current extension, because the PP event time is directly related
to the P-wave velocity and the PS event time is directly related to
P- and S-wave velocities. They provide additional information to
constrain the estimates of P- and S-wave velocities beyond the re-
flectivity-based PP and PS full waveforms.
Traditional methods for joint inversion of PP and PS data are

primarily based on the mapping of PS data to PP time (or domain
conversion), in which PS data are considered as additional seismic
stacks. Although this approach is simple to implement, it suffers
from difficulties such as wavelet distortion (Bansal and Matheney,
2010) because the conversion of PS time to PP time needs interval
seismic P-to-S velocity ratios, which are not known a priori.
In this study, we avoid the PP-to-PS domain conversion and use

PS data directly in the PS time domain. We pick a PS event from PS
seismograms that has a good correspondence with a PP event in the
PP seismograms along the same profile; we refer to it as the master
PS horizon. In the PS forward simulation, we calculate all the PS
times relative to the master horizon. The relative PP and PS time for
a given layer is calculated by

Δtps ¼
1

2

�
1þ VP

VS

�
Δtpp; (22)

where VP and VS are interval velocities and are unknown; they will
be estimated in inversion procedures.
The likelihood functions of PP and PS event registration time are

determined by assuming that the errors have multivariate Gaussian
distributions. Let Σpp and Σps be the covariance matrices of PP
and PS event time, respectively. We have the following likelihood
functions:

fðTppjtppÞ¼ð2πÞ−k1∕2
���Σpp

���−1∕2 exp
�
−
1

2
ðTpp−tppÞTΣ−1

pp ðTpp−tppÞ
�

and

fðTpsjtpsÞ¼ð2πÞ−k2∕2
���Σps

���−1∕2 exp
�
−
1

2
ðTps−tpsÞTΣ−1

ps ðTps−tpsÞ
�
;

(23)

where k1 and k2 are the dimensions of Tpp and Tps; jΣppj and jΣpsj
are the determinants of the covariance matrix Σpp and Σps.

Conditionals of unknowns and Markov chain Monte
Carlo sampling methods

We use MCMC methods to draw many samples from the joint
distribution given in equation 20. To do this, we first need to derive
conditional distributions of each type of unknowns given all other
variables and data. The normalizing constants of each conditional

are irrelevant when we use MCMC methods to draw samples.
Therefore, we only need to keep the term on the right side of equa-
tion 20 to get its conditional, which is given below:

fðtppj ·Þ∝fðQjtpp;tps;vp;vs;ρÞfðTppjtppÞfðtpsjtpp;vp;vsÞfðtppÞ;
(24)

fðtpsj ·Þ ∝ fðQjtpp; tps; vp; vs; ρÞfðTpsjtpsÞfðtpsjtpp; vp; vsÞ;
(25)

fðvp;vs;ρj ·Þ∝fðQjtpp;tps;vp;vs;ρÞfðtpsjtpp;vp;vsÞfðvp;vs;ρjαÞ;
(26)

and

fðαj ·Þ ∝ fðvp; vs; ρjαÞfðαÞ: (27)

For equations 24–26, we cannot obtain analytical forms of those
conditionals because PP and PS registration time and seismic attrib-
utes vp, vs, and ρ are nonlinear functions of other variables. We have
to use MCMC methods to draw many samples from the joint pos-
terior distribution.
In equation 27, we use the floating-grain rock-physics model

given in equations 1–3 to link layered seismic attributes to their
corresponding reservoir parameters, which is a linear function in
this case. Let vector r be the combined vector of vp, vs, and ρ ar-
ranged by the layer indices and vector α be the corresponding res-
ervoir parameters. We thus have r ¼ μr þHαþ εr, where vector εr
represents the uncertainty associated with the linear relationship.
We assume that it has a multivariate Gaussian distribution with zero
mean and the covariance matrix of Σr. The detailed derivation and
specific forms are given in Appendix B.
If we use a multivariate Gaussian prior for α, i.e., fðαÞ∼

Nðμp;ΣpÞ, we can obtain the analytical formula of posterior dis-
tribution, fðαj ·Þ ∼ Nðμu;ΣuÞ, which is given below as

�
Σ−1
u ¼ HTΣ−1

r Hþ Σ−1
p ;

Σ−1
u μu ¼ HTΣ−1

r ðr − μrÞ þ Σ−1
p μp:

(28)

We can obtain many samples of the joint posterior distribution given
in equation 20 by using MCMC sampling methods.

CASE STUDY OF MULTIPLE LAYERS

We use the second example of Gunning and Glinsky (2007) to
demonstrate the benefits of including converted-wave data into es-
timation of the floating-grain fraction. Figure 4 shows various logs
from an actual borehole, including P- and S-wave velocities, den-
sities, P- and S-wave velocity ratios, and P-wave impedance. Ac-
cording to the logs, we can build a synthetic model with six layers,
which are (1) hard marl, (2) soft marl, (3) shale, (4) upper sand,
(5) shale, and (6) lower sand, from shallow to deep (see Figure 4).
Upper and lower sands are oil reservoirs with an oil saturation of
0.62, net-to-gross (NG) of 0.65, and thicknesses of 213 m (or 700 ft)
and 110 m (or 360 ft), respectively. Figure 5 shows the blockwise
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values of P- and S-wave velocities, densities, P- and S-wave veloc-
ity ratios, and P-wave impedance as a function of normalized depth.
As shown in the figure, layers 4 and 6 have relatively low VP∕VS

ratios, both of which include the floating-grain fraction of 0.035.

PP and PS reflectivities and synthetic seismic data

We generate synthetic PP and PS data by first using equations 6
and 7 to calculate PP and PS reflectivities and then convolve the
reflectivities with a 30-Hz Ricker wavelet. We consider P-wave in-
cident angles of 0°, 9°, 18°, 27°, 36°, and 45°. Figure 6 shows the
synthetic seismic data without noise added, in which PP data are in
the PP time domain, but the PS data are in the PS time domain. For

inversion, we consider the PP trace at the incident angle of zero as
PP data and the PS traces at all the five incident angles as PS data.
We extract AVO gradient traces by subtracting the zero incident an-
gle PP trace from the PP traces with nonzero incident angles. We
assume that all those data have uncorrelated Gaussian random noise
with the standard deviation of 0.01 RFC or 0.02 RFC, depending on
synthetic cases.

Priors for the inversion

Because our main focus is on the demonstration of the value of
PS data for reservoir parameter estimation, we mainly focus on es-
timation of the floating-grain fraction and NG in the upper and
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Figure 5. Blocked values obtained from the bore-
hole logs using Backus average as a function of rel-
ative depth: (a) P-wave velocity (km∕s), (b) S-wave
velocity (km∕s), (c) density (g∕cm3), (d) VP∕VS,
and (e) P-impedance (MPa).
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Figure 4. Various logs from an actual borehole as
a function of depth: (a) P-wave velocity (km∕s),
(b) S-wave velocity (km∕s), (c) density (g∕cm3),
(d) VP∕VS, and (e) P-impedance (MPa).
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lower pay layers. Similar to Gunning and Glinsky (2007), we first
consider prior X ∼ Nð0.02; 0.032Þ; this is a strong prior for the true
floating-grain fraction of 0.035. Second, we consider a weak prior
X ∼ Nð0.0; 0.052Þ; this gives significant prior probability to the
zero floating-grain fraction or clean sand. For the NG, we also con-
sider two types of priors: (1) NG ∼ Nð0.6; 0.12Þ and (2) NG∼
Nð0.5; 0.32Þ.
Because we use model-based inversion methods, we can set a

wide range of priors and consider many parameters as unknowns.
For example, we assume that PP traveltime to each interface has the
normal distribution with the true values as mean and 10 ms as the
standard deviation. We assume that the uncertainty in the thickness
of layer 4 is 21 m (or 70 ft) (i.e., 10% of the thickness) and 6 m (or
20 ft) for other layers.

Inversion cases

To test the usefulness of PS data for improving parameter esti-
mation, we invert synthetic seismic data under the following four
scenarios: (1) using only the PP data, (2) using PP and AVO gra-
dient data, (3) using PP and PS data, and (4) using all the seismic
data. We compare the posterior estimates of unknowns under each
case with their corresponding prior distributions to evaluate the ben-
efit of using PS data.
Because the above comparisons usually depend on an inversion sit-

uation, we consider the following three factors: (1) prior on the float-
ing-grain fraction (i.e., X ∼ Nð0.02; 0.032Þ or X ∼ Nð0.0; 0.052Þ),
(2) prior on NG (i.e., NG ∼ Nð0.6; 0.12Þ or NG ∼ Nð0.5; 0.32Þ),
and (3) noise levels. We consider two sets of noise levels. The first
one is that all seismic data have a noise level of 0.01 RFC, and the
other is that the PP data has a noise level of 0.01 RFC, but other data
have a noise level of 0.02 RFC.
By changing priors and noise levels, we obtain many sets of pos-

terior distributions. We use MCMC methods to draw 20,000 sam-
ples and keep the later half for analysis (i.e., 10,000 samples). As an
example, Figure 7 shows 200 realizations, selected from the 10,000
samples by keeping every 50th draw of the chain, for effective P-
and S-wave velocity and density along the profile in the case using
strong priors (i.e., X ∼ Nð0.02; 0.032Þ and NG ∼ Nð0.6; 0.12Þ) and

PP and PS data, in which the red line segments are their correspond-
ing true values. Although those realizations are around the true val-
ues, considerable uncertainties exist. With the use of those samples,
we can obtain wide ranges of statistics, such as means, medians,
modes, density functions, and predictive intervals. In the following
several subsections, we selectively report our inversion results.

Estimation of floating-grain fraction, porosity, and net-
to-gross

We compare the estimates of reservoir parameters (i.e., floating-
grain fraction, NG, and porosity) under different prior distributions.
To investigate the effects of priors about the floating-grain fraction,
we use a strong prior about NG, i.e., NG ∼ Nð0.6; 0.12Þ, and noise
levels for all the data types of 0.01 RFC. This implies the same
quality for all the seismic data. We will explore the effects of noise
levels later on.
Figure 8 compares the posterior probability densities (PDFs) of

the floating-grain fraction, porosity, and NG with their correspond-
ing prior PDFs for layer 4 (i.e., upper pay layer). For the floating-
grain fraction, even under the good prior (i.e., X ∼ Nð0.02; 0.032Þ),
the mode of the prior probability corresponds to the zero floating-
grain fraction or clean sand. After conditioning to seismic data
(i.e., PP data, PP plus AVO data, or PP plus PS data), the modes
of the posterior PDFs correspond to the true values 0.035, with the
results of using PP and PS data fitting better than the other two. As
shown in Figure 9a, if we use a biased prior to clean sand, say X∼
Nð0.0; 0.052Þ, the posterior estimates of the floating-grain fraction
using PP data only and using PP and AVO gradient data provide
biased results (i.e., clean sand). However, the combination of PP
and PS data still provides correct estimates of the true value.
We can get similar results for comparison of porosity PDFs.

Under the good prior of the floating-grain fraction, the modes of
the posterior estimates for all the combinations of seismic data cor-
respond to the true value well (see Figure 8b). But under the biased
prior of the floating-grain fraction, only the posterior estimates

 9 27 45

7.35

7.45

7.55

7.65

Angle (°)

T
im

e 
(m

s)

a)

 9 27 45

8.90

9.00

9.10

9.20

9.30

Angle (°)

T
im

e 
(m

s)

b)

Figure 6. Synthetic seismic (a) PP and (b) PS data as a function of
P-wave incident angles.
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obtained using PP and PS data provide good estimates of porosity
(see Figure 9b). Because we use a very strong prior about the NG
(i.e., NG ∼ Nð0.6; 0.12Þ) for the true value of 0.65, we expect the
updating of the prior to be minimal for all the posterior estimates
(Figure 9c).
We have similar comparisons of posterior PDFs for the lower

pay layer (i.e., layer 6). As shown in Figure 10, although overall
the posterior estimates of the floating-grain fraction and porosity
are worse than those in the upper pay layer, the combination of
PP and PS data provides more information than PP data only or
the combination of PP and AVO gradient data for updating the pri-
ors of the floating-grain fraction and porosity.

Effects of the prior about net-to-gross and noise levels
in seismic data

To explore the effects of the prior about NG, we use less inform-
ative prior (i.e., NG ∼ Nð0.5; 0.32Þ) for NG and good prior about

the floating-grain fraction (X ∼ Nð0.02; 0.032Þ). Because the prop-
erties in the lower pay layer are much less sensitive to seismic data,
we only do the comparison for the upper pay layer. Similar to what
we found earlier, the combination of PP and PS data significantly
improve the estimates of the floating-grain fraction and porosity.
Unlike the previous comparison in Figures 8c and 9c, we found
the combined use of PP and PS data in this case significantly im-
prove the estimates of NG when it has significant uncertainty (see
Figure 11c).
In reality, it is more difficult to collect and process PS and AVO

gradient data compared with PP data. Therefore, they are likely
subject to larger noise. To explore the effects of noise levels on
reservoir parameter estimation, we let the prior of the floating-
grain fraction be X ∼ Nð0.02; 0.032Þ and let NG prior be NG∼
Nð0.6; 0.12Þ. We set the noise level in the PP data still as 0.01
RFC but noise levels in the PS and AVO gradient data as 0.02
RFC. Figure 12 shows the posterior PDFs of the floating-grain frac-
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Figure 8. Posterior probability distributions of the (a) floating-grain
fraction, (b) porosity, and (c) NG in the upper sand layer when pri-
ors about the floating-grain fraction and NG are strong (i.e., X∼
Nð0.02; 0.032Þ and NG ∼ Nð0.6; 0.12Þ, the reference case).
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Figure 9. Posterior probability distributions of the (a) floating-
grain fraction, (b) porosity, and (c) NG in the upper sand layer when
the prior about the floating-grain fraction is weak (i.e., X∼
Nð0.0; 0.052Þ).
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tion, porosity, and NG. Although the estimated results are slightly
worse than those obtained using noise levels of 0.01 RFC for all the
seismic data (see Figure 8), the conclusions remain the same.

Comparison of discrepancies between the estimated
and the true values

Because we use sampling-based methods for inversion, we can
obtain many samples of other variables as given in equation 20,
such as effective P- and S-wave velocities, densities, layer-thick-
ness, etc. With the use of those samples, we can not only visually
compare prior and posterior PDFs but also calculate a wide range of
statistics. In the previous comparisons, we qualitatively compare the
posterior estimates with their corresponding priors. To demonstrate
the value of PS data, in this subsection, we quantitatively compare
the estimated results with their corresponding true values.
We first compare the difference between the estimated median

and the true value, which measures how accurate a chosen point
estimator (in this case, median) to the true value of a given param-

eter. Figure 13a compares the differences between the estimated
floating-grain fraction, porosity, and NG values with their true val-
ues. The prior for the floating-grain fraction is X ∼ Nð0.0; 0.052Þ
and for NG is NG ∼ Nð0.6; 0.12Þ, and the noise levels are 0.01
RFC for PP data and 0.02 for other data sets. We normalize the
results by the difference obtained from prior distributions. For NG,
as we demonstrated earlier, under the good prior, the estimated
medians do not improve the prior medians. The value slightly more
than 1.0 may reflect the effects of noise in seismic data or sampling
variations during the inversion procedure. For the floating-grain
fraction and porosity, when conditioning to PP data, the differences
are significantly reduced. When adding AVO gradient data, the im-
provement is minimal, but adding PS data leads to further reduction.
Figure 13b compares the differences for effective P- and S-wave

velocities, effective density, and layer thickness. For effective P-
wave velocity and density, conditioning to PP data significantly im-
proves the accuracy, and further adding AVO gradients or PS data
does not lead to a significant reduction. However, for estimation of
effective S-wave velocity and layer thickness, either adding AVO

0.00 0.03 0.06 0.09 0.12

 4

 8

12

16

20

Floating-grain fraction

P
ro

ba
bi

lit
y 

de
ns

ity

a)
Prior
PP only
PP + AVO
PP + PS
True value

0.05 0.10 0.15 0.20 0.25 0.30

 3

 6

 9

12

15

Porosity

P
ro

ba
bi

lit
y 

de
ns

ity

b)
Prior
PP only
PP + AVO
PP + PS
True value

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

Net-to-gross

P
ro

ba
bi

lit
y 

de
ns

ity

c)
Prior
PP only
PP + AVO
PP + PS
True value

Figure 10. Posterior probability distributions of the (a) floating-
grain fraction, (b) porosity, and (c) NG in the lower sand layer when
priors about the floating-grain fraction and NG are strong (i.e., X ∼
Nð0.02; 0.032Þ and NG ∼ Nð0.6; 0.12Þ).
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Figure 11. Posterior probability distributions of the (a) floating-
grain fraction, (b) porosity, and (c) NG in the upper sand layer when
the prior about NG is weak (i.e., NG ∼ Nð0.5; 0.32Þ).
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gradient stacks or PS data leads to further reduction of the discrep-
ancies, but adding the PS data gives the best results. For density,
adding PS data does not lead to significant reduction in uncertainty.
This is because, for the current case study, after conditioning to PP
data, the uncertainty is already very small, leaving less room for
further improvement.

Comparison of widths of uncertainty bounds

The MCMC-based methods also allow us to quantitatively com-
pare the uncertainty associated with all the estimation. In this study,
we calculate the widths of 95% predictive intervals. Similar to the
comparison of the discrepancies, we normalize the results by those
obtained from the prior PDFs.
Figure 14 shows the results for reservoir parameters and for ef-

fective parameters. For reservoir parameters (i.e., floating-grain
fraction, porosity, and NG), the reduction of uncertainty is small and
the maximum reduction is around 20%. The use of various combi-
nations of seismic data does not seem to make a significant differ-

ence. For P-wave velocity and density, after conditioning to PP data,
adding AVO gradient data or PS data does not lead further signifi-
cant reduction. However, for S-wave velocity and layer thickness,
adding PS data causes significantly more reduction in the uncer-
tainty than adding AVO gradient data.

Comparison of predictive probabilities

In the previous subsections, we compare the discrepancies be-
tween the estimated and true value and the widths of uncertainty
bounds, both of which just compare one aspect of posterior PDFs.
A better evaluation is to compare the predictive probabilities of a
small interval around the true value, which is given by

probðβ ∈ ½ð1 − εÞβtrue; ð1þ εÞβtrue�jdataÞ; (29)

where β represents a variable under estimation. We set ε ¼ 2.5% for
effective density and 5% for other parameters because the posterior
density has much smaller uncertainty compared with other effective
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Figure 12. Posterior probability distributions of the (a) floating-
grain fraction, (b) porosity, and (c) NG in the upper sand layer when
the errors in the AVO gradient and PS data are doubled.
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Figure 13. Comparison of differences between the true values and
estimated medians for priors X ∼ Nð0.0; 0.052Þ,NG ∼ Nð0.6; 0.12Þ,
and noise of 0.01 RFC for PP data and 0.02 RFC for others, in
which R0 represents PP data only, R0R1 represents PP plus PS
data, R0R2 represents PP plus AVO gradient data, and R0R1R2
represents all the data.
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properties. A larger predictive probability means that the data pro-
vide stronger evidence to support the occurrence of the true values.
Again, we normalize the probabilities by the prior predictive prob-
ability.
Figure 15a compares the predictive probability ratios of the float-

ing-grain fraction, porosity, and NG. These results are more consis-
tent than those shown in Figures 13a and 14a because the ratios of
NG are very close to 1.0. This means that for the tight prior of NG
(NG ∼ Nð0.6; 0.12Þ), the updating can be ignored. For the floating-
grain fraction and porosity, the use of PP data significantly increases
the predictive probabilities. Adding AVO gradient data does not
cause significant improvement. However, adding PS data leads to
significant improvement again. Figure 15b shows the comparison
for effective P- and S-wave velocities, effective density, and layer
thickness. Similarly, we found that adding PS data significantly im-
prove the estimates of effective S-wave velocity and layer thickness
compared with Figures 14b and 15b.

CONCLUSIONS

We started from likelihood analysis of a simple two-layer model,
with the first layer being shale and the second layer being sand, and
we found that seismic PS data are significantly more informative
than AVO gradient data, even with the high-order term included,
for reservoir parameter estimation. Although this analysis is based
on a floating-grain rock-physics model, it is straightforward to ex-
tend the method to other rock-physics models. We assume in this
study that we have a suitable rock-physics model to link seismic
attributes to reservoir parameters and that the seismic data are of
reasonable quality. Without those assumptions, we may not be able
to verify the benefits of using PS data.
We developed a hierarchical Bayesian model to combine PP and

PS data for complicated situations (e.g., multiple layers, a large
number of unknowns, etc.), motivated by the analytical results. We
inverted PS data directly in the PS time domain unlike many pre-
vious methods, which first convert PS time to PP time and then
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Figure 14. Comparison of half-widths of 95% predictive intervals
for priors X ∼ Nð0.0; 0.052Þ, NG ∼ Nð0.6; 0.12Þ, and noise of 0.01
RFC for PP data and 0.02 RFC for others, in which R0 represents
PP data only, R0R1 represents PP plus PS data, R0R2 represents PP
plus AVO gradient data, and R0R1R2 represents all the data.
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Figure 15. Comparison of predictive probability of the true values
for priors X ∼ Nð0.0; 0.052Þ, NG ∼ Nð0.6; 0.12Þ, and noise of 0.01
RFC for PP data and 0.02 RFC for others, in which R0 represents
PP data only, R0R1 represents PP plus PS data, R0R2 represents PP
plus AVO gradient data, and R0R1R2 represents all the data.
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invert PS data in the PP time domain. The alignment of PP and PS
time in our model is carried out by identifying one common reflec-
tion interface and using the PP and PS time to the common interface
as references. This avoids many difficulties caused by the conver-
sion of PS time to PP time, such as the distortion of wavelets, and
the requirement of knowing internal P-wave to S-wave velocity ra-
tios a priori.
We performed comparison studies based on a synthetic six-layer

model to demonstrate the value of PS data for estimating reservoir
parameters. PS data are very helpful for improving the estimates of
porosity and the floating-grain fraction and for improving the esti-
mates of effective S-wave velocity and layer-thickness under a
range of priors and noise levels in seismic data. The NG is relatively
less sensitive to PS data. Compared with the posterior results ob-
tained from PP plus AVO gradient data, PP data are most informative
for parameter estimation, then PS data, and finally AVO gradient
data. This suggests that to improve the estimates of reservoir
parameters, PS data are more valuable because PS data can provide
complementary information to PP data and give similar but better
information than AVO gradient data. Consequently, they have the
potential of significantly improving parameter estimation results.
We claim that PS data are more informative than AVO gradient

data for reservoir parameter estimation. To be precise, the PS data
include some information from the matching between PP and PS
time because we considered PS time registration as data in the
model. The success of using PS data in the inversion depends on
the existence of at least one reference PS time. In the cases in which
we cannot find a good matching between PP and PS time, we may
pick up multiple possible matching with uncertainty. Under these
situations, the value of using PS data may be less apparent than what
we have demonstrated in the six-layer models. In addition, because
we used the convolution method for forward simulation of PP and
PS responses, we need to have known PP and PS wavelets. This
could be difficult in practice and thus limits the applicability of
the current model.
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APPENDIX A

DATA MATRICES FOR SYNTHETIC
TWO-LAYER MODELS

For the case of using only PP data, we setMd ¼ ð1; 0; 0Þ. For the
case of using PP and PS data, we set

Md ¼
�
1 0 0

0 1 0

�
: (A-1)

Similarly, for the case of using PP and AVO gradient traces, we set

Md ¼
�
1 0 0

0 0 1

�
: (A-2)

For the case of using all seismic data, we set

Md ¼
0
@ 1 0 0

0 1 0

0 0 1

1
A: (A-3)

APPENDIX B

DERIVATION OF MEAN VECTOR AND
COVARIANCE MATRICES

In the current study, we assume that the reservoir parameters
under estimation are the loading depth and floating-grain fraction.
Let vpi, vsi, ρi, zi, and xi be seismic P- and S-wave velocities, den-
sities, loading depth, and floating-grain fraction at the ith layer, re-
spectively. From the rock-physics model given in equations 1–5, we
have

ri ¼

0
B@

vpi
vsi
ρi

1
CA ¼

0
B@

avp
avs þ avpbvs

aρ þ avpbρ

1
CA

þ

0
B@

bvp cvp
bvpbvs cvpbvs
bvpbρ cvpbρ þ cρ

1
CA

�
zi
xi

�
þ

0
B@

εvp

bvsεvp þ εvs

bρεvp þ ερ

1
CA

¼ μri þHiαi þ εri: (B-1)

We can form vectors and matrices for all the layers by stacking those
layer-based vectors and matrices; i.e., r ¼ ðrT1 ; rT2 ; : : : ; rTn ÞT , μr ¼
ðμT

1 ;μT
2 ; : : : ;μT

n ÞT , α¼ðαT
1 ;αT

2 ; :::;αT
n ÞT , εr ¼ ðεT1 ; εT2 ; : : : ; εTn ÞT ,

and H ¼ ðHT
1 ;H

T
2 ; : : : ;H

T
n ÞT .

It is straightforward to derive the covariance matrix from equa-
tion B-1 by assuming that residuals εvp, εvs, and ερ in equations 1–3
have Gaussian distributions with zero mean and variances of σ2vp,
σ2vs, and σ2ρ, respectively. Specifically, the matrix is

Σri ¼ σ2vp

0
B@

1 bvs bρ

bvs b2vs þ σ2vs∕σ2vp bvsbρ

bρ bvsbρ b2ρ þ σ2ρ∕σ2vp

1
CA: (B-2)

The covariance matrix Σr ¼ diag ðΣr1;Σr2; : : : ;ΣrnÞ.

REFERENCES

Aki, K., and P. G. Richards, 1980, Quantitative seismology: Theory and
methods: W. H. Freeman and Co.

Bale, R., T. Marchand, K. Wilkinson, K. Wikel, and R. Kendall, 2013, The
signature of shear-wave splitting: Theory and observations on heavy oil
data: The Leading Edge, 32, 14–24, doi: 10.1190/tle32010014.1.

Bansal, R., and M. Matheney, 2010, Wavelet distortion correction due to
domain conversion: Geophysics, 75, no. 6, V77–V87, doi: 10.1190/1
.3494081.

Bernardo, J. M., and F. M. Smith, 2000, Bayesian theory: John Wiley &
Sons.

Stochastic inversion of PP and PS data R245

D
ow

nl
oa

de
d 

10
/2

2/
14

 to
 1

98
.1

28
.1

97
.1

73
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/tle32010014.1
http://dx.doi.org/10.1190/tle32010014.1
http://dx.doi.org/10.1190/tle32010014.1
http://dx.doi.org/10.1190/1.3494081
http://dx.doi.org/10.1190/1.3494081
http://dx.doi.org/10.1190/1.3494081


Brettwood, P., J. P. Leveille, and S. Singleton, 2013, C-wave data improve
seismic imaging: The American Oil & Gas Reporter, 1, 1–5.

Castagna, J. P., H. W. Swan, and D. J. Foster, 1998, Framework for AVO
gradient and intercept interpretation: Geophysics, 63, 948–956, doi: 10
.1190/1.1444406.

Chen, J., A. Kemna, and S. Hubbard, 2008, A comparison between Gauss-
Newton andMarkov chain Monte Carlo based methods for inverting spec-
tral induced polarization data for Cole-Cole parameters: Geophysics, 73,
no. 6, F247–F259, doi: 10.1190/1.2976115.

Davis, T. L., A. Bibolova, S. O’Brien, D. Klepacki, and H. Robinson, 2013,
Prediction of residual oil saturation and cap-rock integrity from time-
lapse, multicomponent seismic data, Delhi field, Louisiana: The Leading
Edge, 32, 26–31, doi: 10.1190/tle32010026.1.

DeMartini, D. C., and M. E. Glinsky, 2006, A model for variation of velocity
versus density trends in porous sedimentary rocks: Journal of Applied
Physics, 100, 014910, doi: 10.1063/1.2210171.

Gardner, G. H. F., L. W. Gardner, and A. R. Gregory, 1974, Formation veloc-
ity and density— The diagnostic basics for stratigraphic traps: Geophys-
ics, 39, 770–780, doi: 10.1190/1.1440465.

Glinsky, M. E., A. Cortis, D. Sassen, H. Rael, and J. Chen, 2013, Rock
physics and geophysics for unconventional resources, multicomponent
seismic, quantitative interpretation: Presented at 2nd International Work-
shop on Rock Physics, http://arxiv.org/abs/1304.6048, accessed 4–9
August 2013.

Gunning, J., and M. E. Glinsky, 2004, Delivery: An open-source model-
based Bayesian seismic inversion program: Computers and Geosciences,
30, 619–636, doi: 10.1016/j.cageo.2003.10.013.

Gunning, J., and M. E. Glinsky, 2007, Detection of reservoir quality using
Bayesian seismic inversion: Geophysics, 72, no. 3, R37–R49, doi: 10
.1190/1.2713043.

Hardage, B. A., M. V. DeAngelo, P. E. Murray, and D. Sava, 2011, Multi-
component seismic technology: SEG, Geophysical References Series.

Mahmoudian, F., and G. F. Margrave, 2004, Three-parameter AVO inversion
with PP and PS data using offset-binning: CREWES Report, vol. 16.

Pacal, E. E., 2012, Seismic imaging with ocean-bottom nodes (OBNs): New
acquisition designs and the Atlantis 4C OBN: M.S. thesis, University of
Houston.

Rodriguez-Saurez, C., 2000, Advanced marine methods: Ocean-bottom and
vertical cable analyses: Ph.D. thesis, University of Calgary.

Stewart, R. R., J. E. Gaiser, R. J. Brown, and D. C. Lawton, 2002, Tutorial—
Converted-wave seismic exploration: Methods: Geophysics, 67, 1348–1363.

Stone, C. J., 1995, A course in probability and statistics: Duxbury Press.
Veire, H. H., and M. Landrø, 2006, Simultaneous inversion of PP and PS

seismic data: Geophysics, 71, no. 3, R1–R10, doi: 10.1190/1.2194533.
Venables, W. N., and B. D. Ripley, 1999, Modern applied statistics with

S-Plus 3rd ed.: Springer.

R246 Chen and Glinsky

D
ow

nl
oa

de
d 

10
/2

2/
14

 to
 1

98
.1

28
.1

97
.1

73
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/1.1444406
http://dx.doi.org/10.1190/1.1444406
http://dx.doi.org/10.1190/1.1444406
http://dx.doi.org/10.1190/1.2976115
http://dx.doi.org/10.1190/1.2976115
http://dx.doi.org/10.1190/1.2976115
http://dx.doi.org/10.1190/tle32010026.1
http://dx.doi.org/10.1190/tle32010026.1
http://dx.doi.org/10.1190/tle32010026.1
http://dx.doi.org/10.1063/1.2210171
http://dx.doi.org/10.1063/1.2210171
http://dx.doi.org/10.1063/1.2210171
http://dx.doi.org/10.1190/1.1440465
http://dx.doi.org/10.1190/1.1440465
http://dx.doi.org/10.1190/1.1440465
http://arxiv.org/abs/1304.6048
http://arxiv.org/abs/1304.6048
http://arxiv.org/abs/1304.6048
http://dx.doi.org/10.1016/j.cageo.2003.10.013
http://dx.doi.org/10.1016/j.cageo.2003.10.013
http://dx.doi.org/10.1016/j.cageo.2003.10.013
http://dx.doi.org/10.1016/j.cageo.2003.10.013
http://dx.doi.org/10.1016/j.cageo.2003.10.013
http://dx.doi.org/10.1016/j.cageo.2003.10.013
http://dx.doi.org/10.1190/1.2713043
http://dx.doi.org/10.1190/1.2713043
http://dx.doi.org/10.1190/1.2713043
http://dx.doi.org/10.1190/1.2194533
http://dx.doi.org/10.1190/1.2194533
http://dx.doi.org/10.1190/1.2194533

